
Popa and Weaver
Fall 2021

CS 161
Computer Security Midterm

Print your name: ,
(last) (�rst)

Print your student ID:

You have 110 minutes. There are 8 questions of varying credit (150 points total).

For questions with circular bubbles, you may select only one choice.

Unselected option (completely un�lled)

Only one selected option (completely �lled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares (completely �lled).

Pre-exam activity (not graded, just for fun): Draw lines to match each character to their name.

Answer: Answer: Answer: Answer: Answer:
Bob Alice Mallory EvanBot Eve

Q1 Honor Code (4 points)
Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am
aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct
will be reported to the Center for Student Conduct and may further result in, at minimum, negative
points on the exam and a corresponding notch on Nick’s Stanley Fubar demolition tool.

Sign your name:

Page 1 of 27

Q2 True/false (30 points)
Each true/false is worth 2 points.

Q2.1 True or False: Assume stack canaries, non-executable pages, and pointer authentication codes
are enabled, but ASLR is disabled. An attacker can execute the RET2ESP attack from Project 1,
Question 6.

True False

Solution: False. A RET2ESP attack involves the CPU jumping to the ESP, which lives on the
stack - but because we have non-executable pages enabled, the stack is non-executable (and
thus the program will crash when the EIP moves to the ESP).

Q2.2 True or False: Assume that ASLR is enabled, but all other memory safety defenses are disabled.
It’s possible to �nd an exploit that will allow an attacker to learn the address of the RIP during
program execution.

True False

Solution: True. If a format string vulnerability exists, an adversary could print a stack address
(e.g. the value of the SFP), which would then allow the attacker to identify where the RIP was
on the stack.

Q2.3 True or False: When designing a secure system, we often assume that an adversary has access
to our source code.

True False

Solution: True. Remember Shannon’s Maxim: Do not rely on security through obscurity!

Q2.4 True or False: If pointer authentication codes are enabled, the program will always crash if the
user writes past the end of a bu�er.

True False

Solution: False. PAC’s only protect pointers on the stack, so it still could be possible to write
past the end of a bu�er and overwrite a boolean �ag, for example.

Midterm Page 2 of 27 CS 161 – Fall 2021

Q2.5 True or False: Let Enc(K,M) be an IND-CPA secure encryption function. If Alice computes
Enc(“Hello”, “World”) and Bob computes Enc(“Hello”, “World”), they will always evaluate to the
same ciphertext.

True False

Solution: False. Because this encryption function is IND-CPA secure, the scheme cannot be
deterministic; consequently, encrypting the same thing twice (even with the same key and
value) must yield two unique ciphertexts.

Q2.6 A PRNG has been securely initialized with truly random bits. Assume the attacker has not learned
the PRNG’s internal state.

True or False: It is infeasible for the attacker to distinguish n bits of PRNG output from n truly
random bits.

True False

Solution: True. This is the security de�nition of a PRNG.

Q2.7 Alice and Bob are building a password management scheme for CalCentral. Carol tells them that
they should store a record of (username,MD5(password)) for each user in the database.

Clari�cation during exam: MD5 is a cryptographic hash function.

True or False: This design protects against o�ine password hashing attacks.

True False

Solution: False, for two reasons: MD5 is a weak hash, and the password isn’t salted.

Q2.8 True or False: When designing a password management scheme, all security guarantees are
lost if the attacker gains access to a table containing salt values.

True False

Solution: False. Salts can be public information - their purpose is to prevent dictionary
attacks.

Q2.9 True or False: Assume that stack canaries are enabled, but all other memory safety defenses
are disabled. A format string vulnerability in a vulnerable C program may allow an attacker to
write arbitrary bytes anywhere on the stack.

True False

Solution: True. The %n speci�er allows the attacker to write to an arbitrary address.

Midterm Page 3 of 27 CS 161 – Fall 2021

Q2.10 True or False: If a website requires all passwords to be at least 20 characters long, then it’s
more di�cult for an adversary to perform rainbow table attacks on unsalted password hashes.

True False

Solution: We dropped this subpart and gave everyone full points during the exam, because
the phrasing "more di�cult" was ambiguous. It was not clear what we are comparing this
scheme to.

The intended answer was true. Brute-force attacks, online or o�ine, are harder when passwords
are longer.

Q2.11 True or False: Di�e-Hellman is susceptible to man-in-the-middle attacks.

True False

Solution: True. Mallory can do a DH with both sides!

Q2.12 Bob has public key PKB and private key SKB . Assume that Sign is a secure digital signature
algorithm.

True or False: {“Bob’s public key is PKB”}SK−1
B

is a valid certi�cate on Bob’s public key.

True False

Solution: False. Certi�cates are signed by someone else’s secret key. Bob cannot endorse his
own public key.

Q2.13 Recall that in ElGamal, the ciphertext is C1 = gr mod p and C2 = M × (gb)r mod p.

True or False: Alice encrypts M and sends the corresponding ciphertext C1 and C2 to Bob. If
Mallory replaces the ciphertext with 2×C1 and 2×C2, Bob will decrypt the ciphertext as 2×M .

True False

Solution: False. Mallory should replace the ciphertext with C1 and 2× C2.

Q2.14 Alice and Bob share a symmetric keyK not known to anyone else, andMAC is a secure (unforgeable)
MAC scheme. Alice presents the statement M = “Bob owes Alice 100 dollars” and the MAC
MAC(K,M) to a judge.

True or False: The judge can be sure that the message was sent by Bob to Alice.

True False

Solution: False. Alice could have constructed the MAC of the message herself.

Midterm Page 4 of 27 CS 161 – Fall 2021

Q2.15 True or False: In the Bitcoin ledger, everyone can add new entries and modify/delete existing
entries.

True False

Solution: False. Bitcoin uses a public ledger that is append-only and immutable meaning that
everyone can add entries to the ledger, but nobody can modify or delete existing entries.

Midterm Page 5 of 27 CS 161 – Fall 2021

Q3 EvanBot Alpha (15 points)
Earlier releases of EvanBot sometimes came with security vulnerabilities. For each subpart, select the
most relevant security principle. Each option is used exactly once.

Q3.1 (3 points) When debugging students’ code, EvanBot Alpha ran all code with administrator privi-
leges. The latest version of EvanBot runs untrusted code in an isolated environment (sandbox)
instead.

(A) Consider human factors

(B) Least privilege

(C) Separation of responsibility

(D) Don’t rely on security through obscurity

(E) Design in security from the start

Solution: Least privilege. Administrator privileges are not needed to run all student code.

Q3.2 (3 points) Any TA by themselves could instruct EvanBot Alpha to release exam solutions. The
latest version of EvanBot requires two TAs to approve the instruction before releasing exam
solutions.

(G) Consider human factors

(H) Least privilege

(I) Separation of responsibility

(J) Don’t rely on security through obscurity

(K) Design in security from the start

Solution: Separation of responsibility. Releasing exam solutions is a dangerous privilege, so
we require multiple TAs to approve before the privilege can be exercised.

Q3.3 (3 points) The default setting for EvanBot Alpha was to store exam solutions with no encryption.
To encrypt exam solutions with AES, TAs had to manually change a setting in EvanBot Alpha’s
source code. The latest version of EvanBot encrypts exam solutions by default.

(A) Consider human factors

(B) Least privilege

(C) Separation of responsibility

(D) Don’t rely on security through obscurity

(E) Design in security from the start

Solution: Consider human factors. If it is di�cult to �nd the secure option (encrypting exam
solutions), then it will not be used.

Midterm Page 6 of 27 CS 161 – Fall 2021

Q3.4 (3 points) To protect exam solutions, EvanBot Alpha used a secret encryption algorithm. The latest
version of EvanBot uses a well-known encryption algorithm with a secret key.

(G) Consider human factors

(H) Least privilege

(I) Separation of responsibility

(J) Don’t rely on security through obscurity

(K) Design in security from the start

Solution: Don’t rely on security through obscurity. If the secret encryption algorithm leaked,
we would need to change the algorithm entirely. If the secret key leaks, we only need to change
the key.

Q3.5 (3 points) EvanBot Alpha required frequent patches to �x vulnerabilities. The latest version of
EvanBot’s source code was rewritten from scratch and requires far fewer security patches.

(A) Consider human factors

(B) Least privilege

(C) Separation of responsibility

(D) Don’t rely on security through obscurity

(E) Design in security from the start

Solution: Design in security from the start. When code is not written with security in mind,
it will need to be patched later to �x vulnerabilities.

Midterm Page 7 of 27 CS 161 – Fall 2021

Q4 CIA (15 points)
Alice and Bob want to communicate securely over an insecure channel. Mallory can read and modify
messages sent over the channel. Determine whether each scheme provides con�dentiality, integrity,
both, or neither. Each subpart is independent.

Assumptions:

• ECB and CBC denote AES-ECB and AES-CBC encryption, respectively.

• MAC is a secure (existentially unforgeable) MAC scheme.

• Sign denotes RSA signatures.

• Alice and Bob share two symmetric keys, K1 and K2, not known to anyone else.

• Alice has an RSA key pair (PKa, SKa). Bob knows PKa, and SKa is not known to anyone other
than Alice.

Clari�cation during exam: Assume that Eve knows the padding scheme.

Q4.1 (3 points) Alice sends over CBC(K1,M) and MAC(K2,M).

(A) Con�dentiality

(B) Integrity

(C) Both

(D) Neither

Solution: The MAC provides integrity, since the MAC can only be computed when K is
known. However, the MAC provides no guarantee of con�dentiality, as the MAC can leak bits
of the plaintext.

Q4.2 (3 points) Alice computesC = CBC(K1,M). Then, Alice sendsECB(K2, C) andSign(SKa, C).

(G) Con�dentiality

(H) Integrity

(I) Both

(J) Neither

Solution: The use of an IND-CPA insecure encryption scheme (ECB) in series with an IND-
CPA secure encryption scheme (CBC) will be IND-CPA secure and thus provide con�dentiality,
since the security of the modi�ed scheme reduces to the security of the IND-CPA secure
scheme (CBC). In addition, Alice’s valid signature on the message provides integrity.

Midterm Page 8 of 27 CS 161 – Fall 2021

Q4.3 (3 points) Alice computes C0 = CBC(K1,M) and C1 = ECB(K1,M). Then, Alice sends C0, C1,
and Sign(SKa, C0).

(A) Con�dentiality

(B) Integrity

(C) Both

(D) Neither

Solution: The use of an IND-CPA insecure encryption scheme (ECB) in parallel with an
IND-CPA secure encryption scheme (CBC) will be IND-CPA insecure and thus not provide
con�dentiality, since the security of the modi�ed scheme reduces to the security of the IND-CPA
insecure scheme (ECB). Alice’s valid signature on the message provides integrity.

Q4.4 (3 points) Alice computes C = CBC(K1,M). Alice sends C and MAC(K2, C).

(G) Con�dentiality

(H) Integrity

(I) Both

(J) Neither

Solution: This scheme is an authenticated encryption scheme denoted as encrypt-then-MAC.
Unlike the previous part, the MAC is computed over the encryption of the plaintext, so plaintext
bits are not leaked.

Q4.5 (3 points) Alice sends CBC(K1,M) and Sign(SKa, “This message was sent by Alice”).

(A) Con�dentiality

(B) Integrity

(C) Both

(D) Neither

Solution: This scheme provides con�dentiality since CBC is IND-CPA secure. This scheme
does not provide integrity because a man-in-the-middle (MITM) attacker can perform a replay
attack on the signature, attaching the signature to an arbitrary message.

Midterm Page 9 of 27 CS 161 – Fall 2021

Q5 Ivy Why (21 points)
Alice wants to send a 400-bit message M to Bob. Assume that Alice is using a block cipher with 128-bit
blocks and that Alice is using PKCS#7 for padding (this is the padding scheme from Homework 2).

Eve observes the encryption of M . Assume that Eve knows which encryption scheme is being used.
For each encryption scheme, what is the most speci�c information Eve can learn about len(M), the
length of M in bits?

Clari�cation during exam: PKCS #7 is a correct padding scheme that pads the number of padding bytes
added.

Q5.1 (3 points) Alice pads the plaintext to the nearest multiple of the block size and then encrypts the
padded plaintext with CBC mode.

(A) len(M) = 400

(B) len(M) < 256

(C) 256 ≤ len(M) < 384

(D) 384 ≤ len(M) < 512

(E) 512 ≤ len(M)

(F) None of the above

Solution: Eve has no way of knowing the exact length of the message since we are using
padding. However, CBC mode does leak the length to the nearest block size, so we leak the
fact that we use four blocks.

Q5.2 (3 points) Alice pads the plaintext to the nearest multiple of the block size and then encrypts the
padded plaintext with CTR mode.

(G) len(M) = 400

(H) len(M) < 256

(I) 256 ≤ len(M) < 384

(J) 384 ≤ len(M) < 512

(K) 512 ≤ len(M)

(L) None of the above

Solution: Padded plaintext looks indistinguishable from random, so again we only leak length
to the nearest block size, so we leak the fact that we use four blocks.

Q5.3 (3 points) Alice encrypts the message with CTR mode and then pads the ciphertext to the nearest
multiple of the block size.

(A) len(M) = 400

(B) len(M) < 256

(C) 256 ≤ len(M) < 384

(D) 384 ≤ len(M) < 512

(E) 512 ≤ len(M)

(F) None of the above

Solution: Since the padding happens on the ciphertext, Eve can de-pad to retrieve the cipher-
text without padding. Since we’re using CTR mode, Eve learns the exact length of M .

For the rest of this question, Alice is sending two 400-bit messages M1 and M2 to Bob. M1 and M2 are
identical except in the 200th bit.

Eve observes the encryption of M1 and the encryption of M2. Assume that Eve knows which encryption

Midterm Page 10 of 27 CS 161 – Fall 2021

scheme is being used. For each encryption scheme, what is the most speci�c information that Eve can
learn about how the messages di�er? Assume that inputs for block cipher modes that require padding
are correctly padded.

Q5.4 (3 points) Alice encrypts the messages with ECB mode.

(G) The messages di�er in only the 200th bit

(H) The messages di�er in only the second block (Eve doesn’t know which bit)

(I) The messages di�er in the second block and possibly subsequent blocks

(J) The messages di�er somewhere (Eve doesn’t know which blocks)

(K) None of the above

Solution: ECB shows which blocks di�er from one another (since it is a deterministic block
cipher). As such, it shows that all the blocks are the same except the second block, but because
block ciphers are indistinguishable from random, Eve can’t tell that only one bit is di�erent.

Q5.5 (3 points) Alice encrypts the messages with CBC mode. Alice uses the same IV for both encryptions.

(A) The messages di�er in only the 200th bit

(B) The messages di�er in only the second block (Eve doesn’t know which bit)

(C) The messages di�er in the second block and possibly subsequent blocks

(D) The messages di�er somewhere (Eve doesn’t know which blocks)

(E) None of the above

Solution: CBC mode with a reused IV leaks the �rst block in which messages di�er. After
this, the inputs to the next block of CBC mode change unpredictably, and security is restored
for the remainder of the message.

Midterm Page 11 of 27 CS 161 – Fall 2021

Q5.6 (3 points) Alice encrypts the messages with CTR mode (with no padding). Alice uses the same
nonce for both encryptions.

(G) The messages di�er in only the 200th bit

(H) The messages di�er in only the second block (Eve doesn’t know which bit)

(I) The messages di�er in the second block and possibly subsequent blocks

(J) The messages di�er somewhere (Eve doesn’t know which blocks)

(K) None of the above

Solution: CTR with the same IV is e�ectively one-time pad, so Eve sees exactly which bit
was di�erent.

Q5.7 (3 points) Alice encrypts the messages with CTR mode (with no padding). Alice uses a di�erent,
random nonce for each encryption.

(A) The messages di�er in only the 200th bit

(B) The messages di�er in only the second block (Eve doesn’t know which bit)

(C) The messages di�er in the second block and possibly subsequent blocks

(D) The messages di�er somewhere (Eve doesn’t know which blocks)

(E) None of the above

Solution: Since nonces are public values, knowing them doesn’t give Eve extra information.
CTR mode is IND-CPA secure with di�erent nonces so Eve didn’t actually learn anything.

Midterm Page 12 of 27 CS 161 – Fall 2021

Q6 Bonsai (22 points)
EvanBot wants to store a �le in an untrusted database that the adversary can read and modify.

Before storing the �le, EvanBot computes a hash over the contents of the �le and stores the hash
separately. When retrieving the �le, EvanBot re-computes a hash over the �le contents, and, if the
computed hash doesn’t match the stored hash, then EvanBot concludes that the �le has been tampered
with.

Clari�cation during exam: Assume that EvanBot does not know if hashes or �les have been modi�ed in
the untrusted datastore.

Clari�cation during exam: The assumption that only F2 is modi�ed applies for all parts after subpart 4.

NOTE: Subparts 6.4–6.7 have been dropped from this question due to ambiguities in wording
and clari�cations.

Q6.1 (4 points) What assumptions are needed for this scheme to guarantee integrity on the �le? Select
all that apply.

(A) An attacker cannot tamper with EvanBot’s stored hash

(B) EvanBot has a secret key that nobody else knows

(C) The �le is at most 128 bits long

(D) EvanBot uses a secure cryptographic hash

(E) None of the above

Solution: In order to guarantee integrity on this �le, we need two assumptions to hold.

First, the attacker shouldn’t be able to tamper with the stored hash. If they could, then the
attacker could simply replace the �le with an arbitrary �le of the attacker’s choice, and replace
the original stored hash with a hash over this new �le. EvanBot’s check on the �le would
succeed.

If EvanBot had a secret key, then EvanBot could change the scheme to use a MAC using the
secret key instead of a hash. However, since this scheme uses a hash, a secret key doesn’t help
us here.

The �le being 128 bits long has no relevance to this question.

Finally, the hash must be a secure cryptographic hash. A quick counterexample: if EvanBot
used a hash function that mapped every input to the hash value "1", then the attacker could
choose an input of their choice, and the check on the hash would always succeed.

For the rest of this question, we refer to two databases: a trusted database that an adversary cannot
read or modify, and an untrusted database that an adversary can read and modify.

Assume that H is a secure cryptographic hash function and ‖ denotes concatenation.

EvanBot creates and stores four �les, F1, F2, F3, and F4, in the untrusted database. EvanBot also
computes and stores a hash on each �le’s contents in the untrusted database:

Midterm Page 13 of 27 CS 161 – Fall 2021

h1 = H(F1) h2 = H(F2) h3 = H(F3) h4 = H(F4)

Then, EvanBot stores hroot = H(h1‖h2‖h3‖h4) in the trusted database.

Q6.2 (3 points) If an attacker modi�es F2 stored on the server, will EvanBot be able to detect the
tampering?

(G) Yes, because EvanBot can compute hroot and see it doesn’t match the stored hroot

(H) Yes, because EvanBot can compute h2 and see it doesn’t match the stored h2

(I) No, because the hash doesn’t use a secret key

(J) No, because the attacker can re-compute h2 to be the hash of the modi�ed �le

Solution:

In this scheme, we have a trusted database that an adversary cannot read or modify. Because we
have this trusted database, it’s possible to ensure integrity through the use of hashes, despite
them not being signed (like MAC’s).

Let’s walk through what happens if an attacker modi�es F2. If the attacker modi�es this �le
and nothing else, then it’s easy for Bot to detect tampering: Bot just has to recompute a hash
over F2 and realize that it doesn’t match h2.

However, an attacker can also modify h2 to be the hash of the malicious �le, since it’s in the
untrusted database. Because of this, in order to detect tampering, Bot has to use the only thing
that the attacker doesn’t have access to: hroot, which is stored in the trusted database.

Based on this information: the simplest way to verify the integrity of F2 is to:

1. Recompute a hash over F1, F2, F3, and F4.

2. Recompute hroot using these hashes.

3. Compare this hroot to the stored version of hroot.

If the attacker modi�es F2, then Bot will always be able to detect the tampering, since the
check on the root hashes will fail.

Midterm Page 14 of 27 CS 161 – Fall 2021

Q6.3 (3 points) What is the minimum number of hashes EvanBot needs to compute to verify the integrity
of all four �les?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

(F) More than 5

Solution:

Because the attacker has the ability to modify all �les and hashes in the insecure database, Bot
needs to make sure that the attacker hasn’t modi�ed any single �le/hash pair. To do this, Bot
need to follow the procedure discussed in Q6.2’s solution - recompute a hash over each �le (4
hashes in total), and recompute the root hash (1 hash in total).

For the rest of the question, assume that none of the other �les besides F2 and none of the hashes have
been modi�ed.

Midterm Page 15 of 27 CS 161 – Fall 2021

Q6.4 (3 points) What is the minimum number of hashes EvanBot needs to compute to verify the integrity
of only F2?

(G) 1

(H) 2

(I) 3

(J) 4

(K) 5

(L) More than 5

Solution:

The wording of this question threw a lot of students o� during the exam — we received many,
many questions about this. We’ll try to explain our original intention here, but due to the
confusion — and the fact that a clari�cation was issued pretty late — and the fact that we,
as course sta�, decided that this question is fundamentally broken: we decided to drop this
subpart, and all remaining subparts of this question.

Let’s start by thinking about the work that EvanBot, who knows nothing about what the
adversary is going to do with these �les, has to do.

As EvanBot, verifying the integrity of only F2 is challenging here, because Bot doesn’t know
what’s going on with the other �les and hashes.

If they are modi�ed, then Bot cannot make any determinations about the integrity of only F2.
It’s easy for Bot to know if any of the �les have been tampered with (as an ensemble), but
computing the integrity for a particular �le is provably impossible in this scheme.

Realizing this in exam pre-testing, we added an optimistic assumption above this question,
stating that none of the �les other than F2 and none of the hashes in the untrusted database
have been modi�ed.

This assumption makes it possible for an individual to use this scheme to verify F2’s integrity.
Without it, this scheme just doesn’t work.

From the perspective of the reader, once we make this assumption, we can simply recompute
F2’s hash and the root hash, and if the root hash doesn’t match the stored root hash, we
know that F2 has been modi�ed. Our knowledge (which is something that EvanBot could not
possibly have) is what lets us check the integrity of F2.

All of this said, let’s go back to what the question is asking: What is the minimum number of
hashes EvanBot needs to compute to verify the integrity of only F2. Because the question
phrased from the perspective of EvanBot, it is impossible for EvanBot to come to the
same conclusions that we can about this system. Because of this, this question is broken.

During the exam, we issued a clari�cation that stated the following:

6, all subparts: Assume that EvanBot does not know if hashes or �les have been modi�ed in the
untrusted datastore.

This clari�cation, unfortunately, solidi�ed the impossibility of this question: because EvanBot
has no knowledge over the assumptions that we’re making, it’s just not possible for EvanBot
to verify the integrity of only F2.

As such, we threw out subparts 6.4 through 6.7.

Midterm Page 16 of 27 CS 161 – Fall 2021

Q6.5 (3 points) If EvanBot uses the minimum number of hash computations, how many hashes from
the untrusted database are used to verify the integrity of only F2?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

(F) More than 5

Solution: This question was dropped. See solution to 6.4.

EvanBot changes the protocol as follows:

Before storing the �les, EvanBot �rst computes the hash of each �le individually and stores the following
in the untrusted database:

h1 = H(F1) h2 = H(F2) h3 = H(F3) h4 = H(F4)

Then, EvanBot computes and stores the following in the untrusted database:

hleft = H(h1||h2)

hright = H(h3||h4)

Finally EvanBot computes and stores the following in the trusted database:

hroot = H(hleft||hright)

Q6.6 (3 points) What is the minimum number of hashes EvanBot needs to compute to verify the integrity
of only F2?

(G) 1

(H) 2

(I) 3

(J) 4

(K) 5

(L) More than 5

Solution: This question was dropped. See solution to 6.4.

Q6.7 (3 points) If EvanBot uses the minimum number of hash computations, how many hashes from
the untrusted database are used to verify the integrity of only F2?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

(F) More than 5

Solution: This question was dropped. See solution to 6.4.

Midterm Page 17 of 27 CS 161 – Fall 2021

Q7 Returnless (20 points)
Consider the following vulnerable C code:

1 in t main (void) {
2 in t i ;
3 char i n p u t [1 6] ;
4 in t s tored_nums [4] ;
5
6 for (i = 0 ; i < 4 ; i ++) {
7 p r i n t f (" E n t e r s t o r e d number f o r %d : " , i) ;
8 g e t s (i n p u t) ;
9 s tored_nums [i] = a t o i (i n p u t) ;

10 }
11
12 while (i >= 0) {
13 p r i n t f (" Which s t o r e d number do you want t o p r i n t ? ") ;
14 g e t s (i n p u t) ;
15 i = a t o i (i n p u t) ;
16 i f (i >= 0) {
17 p r i n t f ("%d \ n " , s tored_nums [i]) ;
18 }
19 }
20 return 0 ;
21 }

Assume you are on a little-endian 32-bit x86 system. Assume that there is no compiler padding or
additional saved registers in all subparts. Assume that stack canaries are enabled, and all other
memory safety defenses are disabled (unless otherwise speci�ed).

Midterm Page 18 of 27 CS 161 – Fall 2021

Q7.1 (3 points) Assume the program is paused immediately after executing line 4. Complete the stack
diagram below.

(a)
SFP of main

(b)
(c)
(d)
(e)

(A) (a) - canary; (b) - RIP of main; (c) - input; (d) - stored_nums; (e) - i

(B) (a) - canary; (b) - i; (c) - input; (d) - stored_nums; (e) - RIP of main

(C) (a) - RIP of main; (b) - canary; (c) - i; (d) - input; (e) - stored_nums

(D) (a) - RIP of main; (b) - canary; (c) - stored_nums; (d) - input; (e) - i

(E) (a) - canary; (b) - printf; (c) - stored_nums; (d) - input; (e) - i

(F) (a) - canary; (b) - i; (c) - input; (d) - stored_nums; (e) - printf

Solution: Recall the SFP is stored below the RIP and that the local variables are stored below
the SFP.

Q7.2 (3 points) Which of the following vulnerabilities is present in this code?

(G) Bu�er over�ow

(H) Format string vulnerability

(I) Integer over�ow vulnerability

(J) Signed/unsigned vulnerability

(K) None of the above

Solution: The gets functions in this question lead to a clear bu�er over�ow vulnerability,
since gets doesn’t check the length of the bu�er.

There are no format string vulnerabilities because all instances of printf take a static string
as an input.

There are no integer over�ow vulnerabilities because we never perform arithmetic on integer
values.

There are no signed/unsigned vulnerabilities because we never cast a signed value to an
unsigned value or vice-versa, and the for loop iterates from 0 to 7 regardless of whether i is
signed or unsigned.

Midterm Page 19 of 27 CS 161 – Fall 2021

Q7.3 (4 points) Which of these inputs to the gets call at line 14 will leak the value of the canary? Select
all that apply.

(A) '-1'

(B) '\x00'

(C) '9'

(D) '12'

(E) None of the above

Solution: Notice that this code allows for any non-negative integer value index. According
to the stack diagram, the canary must be stored at index 9 (0–3 are stored_nums, 4–7 are
input, and 8 is i).

print('12\n')
print('34\n')
print('56\n')
print('78\n')
print('9\n')

Q7.4 (4 points) Assume that the address of input is 0x7ffc9180.

Fill in the blanks to construct another input to the gets call at line 14 that will overwrite the
canary with itself and cause the program to execute malicious shellcode.

Write your answer in Python 2 syntax (just like Project 1). You can use the variable CANARY as the
leaked 4-byte canary value and the variable SHELLCODE as the 32-byte shellcode.

Clari�cation during exam: You do not need to use all blanks.

'____________' + '\x______' + ('A' * _____) + ________________ +

('B' * _____) + - - '\x______\x______\x______\x______' + ________________ + '\n'

Solution:

'-1' + '\x00' + 'A' * 17 + CANARY + 'B' * 4 +

'\xA0\x91\xfc\x7f' + SHELLCODE + '\n'

The bu�er must start with '-1\x00' so that atoi returns a negative number, causing the
loop to exit and the function to return. Since -1 takes up 2 bytes and we add in a null byte,
we have to overwrite the remaining 13 bytes of input and the four bytes of i for a total of
17 garbage btyes. Then we overwrite the SFP with four more dummy bytes followed by the
address of the SHELLCODE (which we place at RIP + 4, which is the address of the input +
16 bytes to jump over input + 4 bytes to jump over i + 4 bytes to jump over the canary + 4
bytes to jump over the SFP + 4 bytes to jump over the RIP) – this is the address of the input
plus 0x20. Then we place the SHELLCODE 4 bytes above the RIP.

Midterm Page 20 of 27 CS 161 – Fall 2021

Q7.5 (3 points) Is it possible to exploit this program without overwriting the stack canary (even with
itself)?

(A) Yes, using a format string vulnerability at line 7

(B) Yes, using a write at line 9

(C) Yes, using a format string vulnerability at line 13

(D) Yes, using the call to gets at line 14

(E) No, because you can’t learn the address of the RIP

(F) No, because stack canaries prevent the value of the RIP from changing at all

Solution: The intended solution was (B), but we were not clear about what "exploit" means
(whether that’s crashing the program, overwriting another variable, or executing shellcode),
so we accepted any valid memory safety vulnerability: (B) and (D) are both correct answers.

Note that (A) and (C) are not correct answers because those printf calls do not have format
string vulnerabilities (the �rst argument is not under attacker control).

Q7.6 (3 points) For this subpart only, assume that the code is run on a 64-bit system with stack canaries
disabled but pointer authentication enabled.

Assume that you have found a vulnerability that would allow the used bits of a 64-bit address to be
overwritten without touching the bits used by the PAC. Would this vulnerability, by itself, allow
an attacker to execute malicious shellcode?

(G) Yes, because this vulnerability leaves the PAC bits undisturbed

(H) Yes, because this vulnerability overwrites the PAC bits with itself

(I) No, because the value of the PAC depends on the address of the pointer

(J) No, because the PAC is deterministic

Solution: PACs are dependant on the value of the address, so even if the attacker can leave the
PAC undisturbed, changing the return would cause veri�cation of the PAC to fail. A successful
attack must overwrite the address and overwrite the PAC with a valid PAC for the new address.

Midterm Page 21 of 27 CS 161 – Fall 2021

Q8 161 Meets 61A (23 points)
Consider the following buggy C code:

1 void a d d _ l e t t e r (in t i , char ∗ buf) {
2 char word [4] ;
3 p r i n t f (" E n t e r Word %d : \ n " , i) ;
4 f g e t s (word , 4 , s t d i n) ;
5 buf [i] = word [0] ;
6 i f (i > 0) {
7 a d d _ l e t t e r (i − 1 , buf) ;
8 }
9 }

10
11 void make_acronym (void) {
12 char r e s u l t [4] ;
13 a d d _ l e t t e r (4 , r e s u l t) ;
14 p r i n t f ("%s \ n " , r e s u l t) ;
15 }
16
17 void word_games (void) {
18 make_acronym () ;
19 }
20
21 in t main (void) {
22 word_games () ;
23 return 0 ;
24 }

Assume you are on a little-endian 32-bit x86 system. Assume that there is no compiler padding or
additional saved registers in all subparts. Assume all memory-safety defenses (ASLR, stack canaries,
pointer authentication codes, and non-executable pages) are disabled, unless otherwise speci�ed.

Q8.1 (3 points) How many times will the add_letter function be run each time the make_acronym
function is called?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4 (F) 5

Solution: Five times; i = 4, i = 3, i = 2, i = 1, and i = 0.

Midterm Page 22 of 27 CS 161 – Fall 2021

Q8.2 (4 points) Which value(s) will be overwritten (partially or completely) when you provide an input
for the prompt to “Enter Word 4:”? Select all that apply.

(G) RIP of word_games

(H) SFP of word_games

(I) RIP of make_acronym

(J) SFP of make_acronym

(K) None of the above

Solution: At a high level, this code contains a buggy implementation of an acronym generator:
it prompts the user for a series of words, and stores the resulting acronym (a word consisting
of the �rst word of every letter) in result.

Realistically, the function should add a null byte to the end of result, but it doesn’t. Instead,
it provides the user with a mechanism to write to the zero’th, �rst, second, third, and fourth
byte of result.

Because the user has no way to avoid writing to the fourth byte of result, the SFP
of make_acronym (which is above result on the stack) will always be overwritten,
which is why the function might crash during normal execution.

Assume that malicious shellcode is stored at 0x44332211 and the address of result is 0xAABBCCB8.
In the next �ve subparts, provide a series of inputs to fgets that would cause the program to execute
shellcode.

Q8.3 (1 point) First input:

(A) \xA9 (B) \xAC (C) \xB0 (D) \xB4 (E) \xB8 (F) \xBC

Q8.4 (1 point) Second input:

(G) \x00 (H) \x11 (I) \x22 (J) \x33 (K) \x44 (L) \x48

Q8.5 (1 point) Third input:

(A) \x00 (B) \x11 (C) \x22 (D) \x33 (E) \x44 (F) \x48

Q8.6 (1 point) Fourth input:

(G) \x00 (H) \x11 (I) \x22 (J) \x33 (K) \x44 (L) \x48

Midterm Page 23 of 27 CS 161 – Fall 2021

Q8.7 (1 point) Fifth input:

(A) \x00 (B) \x11 (C) \x22 (D) \x33 (E) \x44 (F) \x48

Solution:

print('\xB4') (&result - 4)
print('\x44') (shellcode MSB)
print('\x33')
print('\x22')
print('\x11') (shellcode LSB)

In an earlier sub-part, we established that we could write to the fourth byte of result. Because
that byte is the LSB of the SFP of make_acronym, we can attempt to perform an o�-by-one
attack!

We follow the general o�-by-one structure in the textbook, and in the project, where our goal
is to make the SFP point to a spot somewhere lower on the stack, and then place the address
of our shellcode four bytes above that. For the reasoning behind this attack structure, refer to
the textbook.

To determine where to point the Forged SFP to, notice that our bu�er is only four bytes large,
so we have to point the Forged SFP to the memory address four bytes below the bu�er. The
bu�er is at 0xAABBCCB8, and the original SFP is 0xAABBCCD0, so we set the last byte of the
SFP to 0xB4.

Finally, we notice that our recursive add_word function enters inputs starting at result[4]
and working down to result[0], so we start with the most signi�cant byte of the shellcode
address and work our way to the LSB.

Midterm Page 24 of 27 CS 161 – Fall 2021

Q8.8 (3 points) Assume that you’ve successfully executed the exploit above. At what point will the
function jump to your shellcode?

(G) When main returns

(H) When word_games returns

(I) When make_acronym returns

(J) When add_letter (called with i == 4) returns

(K) When add_letter (called with i == 3) returns

(L) None of the above

Solution: We’re using a version of an o�-by-one exploit here, so the word_games function
has to return in order for the CPU to look for its RIP (and mistakenly �nd a malicious RIP that
we’ve placed in our bu�er instead).

Q8.9 (3 points) For this subpart only, assume stack canaries are enabled. Suppose the CPU gen-
erates a di�erent 4-byte canary for each function call by taking the SHA-512 hash of the RIP and
using the �rst 4 bytes as the canary.

Assume the attacker can execute this program in GDB. Using this scheme, which canary values
would an attacker would be able to learn? Select all that apply.

(A) main

(B) word_games

(C) make_acronym

(D) None of the above

Solution: If the stack canaries are generated using RIP values, then it should be trivial to
inspect these values (e.g. using GDB) and construct the appropriate canaries! This is only
possible because ASLR is disabled.

Midterm Page 25 of 27 CS 161 – Fall 2021

Q8.10 (5 points) For this subpart only, assume stack canaries are enabled. Assume that the CPU
generates a random four-byte canary, but the least-signi�cant byte is always 0xAA. Which series of
inputs to fgets will cause the program to leak the value of the stack canary? Select all that apply.

(G) \xAA, \xAA, \xAA, \xAA, \xAA

(H) \xAA, \x11, \x22, \x33, \x44

(I) \xB8, \xCC, \xFF, \xFF, \xAA

(J) \xAA, \x00, \xFF, \xFF, \xAA

(K) \xB8, \xFF, \xFF, \xFF, \x00

(L) None of the above

Solution:

print('\xAA')
print('\xFF') (any non-null string works)
print('\xFF') (any non-null string works)
print('\xFF') (any non-null string works)
print('\xFF') (any non-null string works)

First, observe that the canary will be placed between the SFP and the result bu�er, so the
o�-by-one bug that causes one byte of result to be overwritten will overwrite the least
signi�cant byte of the canary. However, we’re given the value of that byte - so all we need
to do is ensure the rest of the bu�er is �lled with non-null values. The printf on line 14
will print starting from the address of result until a null-byte is encountered, so if we �ll
everything up to the canary with non-null bytes, the canary should be printed to the console.

Midterm Page 26 of 27 CS 161 – Fall 2021

Doodle Page

Midterm Page 27 of 27 CS 161 – Fall 2021

