
Peyrin Kao
Fall 2022

CS 161
Computer Security Exam Prep 2

Q1 Indirection (0 points)
Consider the following vulnerable C code:

1 # include < s t d l i b . h>
2 # include < s t r i n g . h>
3
4 s t ruc t l o g _ en t r y {
5 char t i t l e [ 8 ] ;
6 char ∗msg ;
7 } ;
8
9 void l o g _ ev en t ( char ∗ t i t l e , char ∗msg ) {
10 s i z e _ t l en = s t r n l e n (msg , 2 5 6 ) ;
11 i f ( l e n == 256 ) return ; / ∗ Mes sage t o o l o ng . ∗ /
12 s t ruc t l o g _ en t r y ∗ en t ry = ma l l o c ( s i z eo f ( s t ruc t l o g _ en t r y ) ) ;
13 entry −>msg = ma l l oc ( 2 5 6 ) ;
14 s t r c p y ( entry −> t i t l e , t i t l e ) ;
15 s t r n cpy ( entry −>msg , msg , l en + 1 ) ;
16 add_ to_ l og ( en t r y ) ; / ∗ Imp l emen t a t i o n no t shown . ∗ /
17 }

Assume you are on a little-endian 32-bit x86 system and no memory safety defenses are enabled.

Q1.1 (3 points) Which of the following lines contains a memory safety vulnerability?

(A) Line 10

(B) Line 13

(C) Line 14

(D) Line 15

(E)

(F)

Solution: Line 14 uses a strcpy, which is not a memory-safe function because it terminates
only when it sees a NULL byte, which is under the control of the attacker. Note that line 15
uses a strncpy whose length parameter comes from strnlen, so it is safe.



Q1.2 (3 points) Fill in the numbered blanks on the following stack and heap diagram for log_event.
Assume that lower-numbered addresses start at the bottom of both diagrams.

Stack Heap
msg 3
1 2
rip
sfp
len
entry

(G) 1 = entry->title 2 = entry->title 3 = msg

(H) 1 = entry->title 2 = msg 3 = entry->title

(I) 1 = title 2 = entry->title 3 = entry->msg

(J) 1 = title 2 = entry->msg 3 = entry->title

(K)

(L)

Solution: The two arguments, title and msg, must be on the stack, so 1 = msg.

Structs are filled from lower addresses to higher addresses, so 2 = entry->title and 3 =
entry->msg.

Using GDB, you find that the address of the rip of log_event is 0xbfffe0f0.

Let SHELLCODE be a 40-byte shellcode. Construct an input that would cause this program to execute
shellcode. Write all your answers in Python 2 syntax (just like Project 1).

Q1.4 (6 points) Give the input for the title argument.

Solution: The title will be used to overflow the title buffer in the struct to point the msg
pointer to the RIP. The input should thus be

'A' * 8 + '\xf0\xe0\xff\xbf'

Q1.5 (6 points) Give the input for the msg argument.

Solution: The first 4 bytes will be written in the location of the RIP, which should point to
the shellcode. Thus, our input should be

'\xf4\xe0\xff\xbf' + SHELLCODE

Page 2



Q2 Stack Exchange (19 points)
Consider the following vulnerable C code:

1 # include <byteswap . h>
2 # include < i n t t y p e s . h>
3 # include < s t d i o . h>
4
5 void p r ep a r e _ i npu t ( void ) {
6 char b u f f e r [ 6 4 ] ;
7 i n t 6 4 _ t ∗ p t r ;
8
9 p r i n t f ( "What i s the b u f f e r ? \ n " ) ;
10 f r e a d ( bu f f e r , 1 , 6 8 , s t d i n ) ;
11
12 p r i n t f ( "What i s the p o i n t e r ? \ n " ) ;
13 f r e a d (& ptr , 1 , s i z eo f ( u i n t 6 4 _ t ∗ ) , s t d i n ) ;
14
15 i f ( p t r < b u f f e r | | p t r >= b u f f e r + 6 8 ) {
16 p r i n t f ( " P o i n t e r i s o u t s i d e b u f f e r ! " ) ;
17 return ;
18 }
19
20 / ∗ R e v e r s e 8 b y t e s o f memory a t t h e a d d r e s s p t r ∗ /
21 ∗ p t r = bswap_64 ( ∗ p t r ) ;
22 }
23
24 in t main ( void ) {
25 p r e p a r e _ i npu t ( ) ;
26 return 0 ;
27 }

The bswap_64 function 1takes in 8 bytes and returns the 8 bytes in reverse order.

Assume that the code is run on a 32-bit system, no memory safety defenses are enabled, and there are
no exception handlers, saved registers, or compiler padding.

1Technically, this is a macro, not a function.

Page 3



Q2.1 (3 points) Fill in the numbered blanks on the following stack diagram for prepare_input.

1 (0xbffff494)
2 (0xbffff490)
3 (0xbffff450)
4 (0xbffff44c)

(A) 1 = sfp, 2 = rip, 3 = buffer, 4 = ptr

(B) 1 = sfp, 2 = rip, 3 = ptr, 4 = buffer

(C) 1 = rip, 2 = sfp, 3 = buffer, 4 = ptr

(D) 1 = rip, 2 = sfp, 3 = ptr, 4 = buffer

(E)

(F)

Solution: The rip is pushed onto the stack first, followed by the sfp, followed by the first local
variable buffer, followed by the second local variable ptr.

Q2.2 (4 points) Which of these values on the stack can the attacker write to at lines 10 and 13? Select all
that apply.

(G) buffer

(H) ptr

(I) sfp

(J) rip

(K) None of the above

(L)

Solution: At line 10, the attacker can write 68 bytes starting at buffer. This overwrites all
64 bytes buffer and the 4 bytes directly above it, which is the sfp.

At line 13, the attacker can write exactly 1 uint64_t * into ptr. This overwrites ptr, and
nothing else.

Notice that the rip cannot be directly overwritten.

Q2.3 (3 points) Give an input that would cause this program to execute shellcode. At line 10, first input
these bytes:

(A) 64-byte shellcode

(B) \xbf\xff\xf4\x4c

(C) \x4c\xf4\xff\xbf

(D) \xbf\xff\xf4\x50

(E) \x50\xf4\xff\xbf

(F)

Page 4



Q2.4 (3 points) Then input these bytes:

(G) 64-byte shellcode

(H) \xbf\xff\xf4\x4c

(I) \x4c\xf4\xff\xbf

(J) \xbf\xff\xf4\x50

(K) \x50\xf4\xff\xbf

(L)

Q2.5 (3 points) At line 13, input these bytes:

(A) \xbf\xff\xf4\x50

(B) \x50\xf4\xff\xbf

(C) \xbf\xff\xf4\x90

(D) \x90\xf4\xff\xbf

(E) \xbf\xff\xf4\x94

(F) \x94\xf4\xff\xbf

Solution: Line 10 writes 68 bytes into the 64-byte buffer, which lets us overwrite the sfp, but
not the rip.

Line 13 lets us write an arbitrary value into ptr,which is then dereferenced in a call to bswap_64.
This lets us reverse any 8 bytes in memory that we want.

The overarching idea here is to write the address of shellcode in the sfp, and then use the call
to bswap_64 to swap the sfp and the rip.

First, we write the 64 bytes of shellcode into the buffer. Then, we overwrite the sfp with
\xbf\xff\xf4\x50. These bytes are written backwards because bswap_64 will reverse all 8
bytes of the sfp and the rip. Finally, we write the address of the sfp, \x90\xf4\xff\xbf, into
ptr. These bytes are written normally because bswap_64 never affects ptr.

Suppose the current rip is 0xdeadbeef. Our input causes the 8 bytes starting at the sfp to be
\xbf\xff\xf4\x50\xef\xbe\xad\xde. When we call bswap_64 at the location of sfp, the
8 bytes starting at sfp are reversed, so they are now \xde\xad\xbe\xef\x50\xf4\xff\xbf.
Notice that the rip is now pointing to the address of shellcode in the correct little-endian order.

Note: Because you can overwrite the sfp, you might be tempted to use the off-by-one exploit
from Q4 of Project 1. However, this does not work here because you need enough space to
write the shellcode and the address of shellcode in the buffer, but the buffer only has space for
the shellcode.

Page 5



Q2.6 (3 points) Suppose you replace 68with 64 at line 10 and line 15. Is this modified code memory-safe?

(G) Yes (H) No (I) (J) (K) (L)

Solution: No. If you make ptr point at one of the last 4 bytes of buffer (which passes the
check at line 15), it will cause part of the sfp to be overwritten. For example, if ptr is located 4
bytes before the end of buffer, the last 4 bytes of buffer will be swapped into the sfp.

Because you can overwrite the sfp, you could still exploit this modified code using the technique
from Project 1, Question 4 (although as mentioned above, you would need shorter shellcode).

This is the end of Q2. Leave the remaining subparts of Q2 blank on Gradescope,
if there are any. You have reached the end of the exam.

Page 6




