Q1 **AES-GROOT**
Tony Stark develops a new block cipher mode of operation as follows:

\[
\begin{align*}
C_0 &= IV \\
C_1 &= E_K(K) \oplus C_0 \oplus M_1 \\
C_i &= E_K(C_{i-1}) \oplus M_i \\
C &= C_0 \Vert C_1 \Vert \cdots \Vert C_n
\end{align*}
\]

For all parts, assume that \(IV\) is randomly generated per encryption unless otherwise stated.

Q1.1 (3 points) Write the decryption formula for \(M_i\) using AES-GROOT. You don’t need to write the formula for \(M_1\).

Solution:

\[
\begin{align*}
M_1 &= C_1 \oplus E_K(K) \oplus IV \\
M_i &= C_i \oplus E_K(C_{i-1})
\end{align*}
\]
Q1.2 (3 points) AES-GROOT is not IND-CPA secure. Which of the following most accurately describes a way to break IND-CPA for this scheme?

- It is possible to compute a deterministic value from each ciphertext that is the same if the first blocks of the corresponding plaintexts are the same.

- C_1 is deterministic. Two ciphertexts will have the same C_1 if the first blocks of the corresponding plaintexts are the same.

- It is possible to learn the value of K, which can be used to decrypt the ciphertext.

- It is possible to tamper with the value of IV such that the decrypted plaintext block M_1 is mutated in a predictable manner.

Solution: The first block of ciphertext is, in fact, non-deterministic since it’s XORed with a random IV. However, this doesn’t provide any useful security since it’s easy to just XOR out the IV and reveal the value of $E_K(K) \oplus M_1$, which is deterministic.

It is not possible to leak the value of K, and tampering with the IV does break integrity, but this does not inherently violate IND-CPA (though it might break other threat models such as IND-CCA).

Q1.3 (5 points) AES-GROOT is vulnerable to plaintext recovery of the first block of plaintext. Given a ciphertext C of an unknown plaintext M and different plaintext-ciphertext pair (M', C'), provide a formula to recover M_1 in terms of C_i, M'_i, and C'_i (for any i, e.g. C_0, M'_2, C'_0).

Recall that the IV for some ciphertext C can be referred to as C_0.

Solution: Like previously, we can XOR out the value of $C_0 = IV$, and, because we know the value of C'_i and M'_i in our plaintext-ciphertext pair, we can derive the value of $E_K(K) = C'_1 \oplus C'_0 \oplus M'_1$. Thus, to learn M_1, we compute

$$M_1 = C_1 \oplus C_0 \oplus C'_1 \oplus C'_0 \oplus M'_1$$
$$= (E_K(K) \oplus C_0 \oplus M_1) \oplus C_0 \oplus (E_K(K) \oplus C'_0 \oplus M'_1) \oplus C'_0 \oplus M'_1$$
$$= M_1$$
If AES-GROOT is implemented with a fixed $IV = 0^b$ (a fixed block of b 0’s), the scheme is vulnerable to full plaintext recovery under the chosen-plaintext attack (CPA) model. Given a ciphertext C of an unknown plaintext and different plaintext-ciphertext pair (M', C'), describe a method to recover plaintext block M_4.

Q1.4 (5 points) First, the adversary sends a value M'' to the challenger. Express your answer in terms of $C_i, M'_i,$ and C'_i (for any i).

Solution: We need to learn the value of $E_K(C_3)$ in order to recover the value of M_4. Since the IV is fixed at 0^b, we can send some message with $M''_1 = E_K(K) \oplus C_3$ and $M''_2 = 0^b$ in order to learn the $E_K(C_3)$. To do this, we first need to derive an expression for $E_K(K)$. Given (M', C'), we know that we can XOR out M''_1 from $C'_{1, i}$ to arrive at

$$E_K(K) = C'_{1, i} \oplus M''_1$$

$$= E_K(K) \oplus 0^b \oplus M'_1 \oplus M''_1$$

$$= E_K(K)$$

Once we have this expression, we send

$$M''_1 = C'_i \oplus M'_i \oplus C_3$$

$$M''_2 = 0^b$$

$$M'' = M''_1 || M''_2$$

The first block of the resulting ciphertext is $C''_1 = E_K(K) \oplus 0^b \oplus E_K(K) \oplus C_3 = C_3$. Because of this, the second resulting ciphertext block is $C''_2 = E_K(C_3) \oplus 0^b = E_K(C_3)$.

Q1.5 (5 points) The challenger sends back the encryption of M'' as C''. Write an expression for M_4 in terms of $C_i, M'_i, C'_i, M''_i,$ and C''_i (for any i).

Solution: Now that we have $C''_2 = E_K(C_3)$, we can simply XOR out that value from $C_4 = E_K(C_3) \oplus M_4$. The resulting expression is

$$M_4 = C_4 \oplus C''_2$$

$$= E_K(C_3) \oplus M_4 \oplus E_K(C_3)$$

$$= M_4$$
Q1.6 (4 points) Which of the following methods of choosing IV allows an adversary under CPA to fully recover an arbitrary plaintext (not necessarily using your attack from above)? Select all that apply.

- IV is randomly generated per encryption
- $IV = 1^b$ (the bit 1 repeated b times)
- IV is a counter starting at 0 and incremented per encryption
- IV is a counter starting at a randomly value chosen once during key generation and incremented per encryption
- None of the above

Solution: The above attack is possible with any method of choosing IV that’s predictable.

Q1.7 (2 points) Let C be the encryption of some plaintext M. If Mallory flips with the last bit of C_3, which of the following blocks of plaintext no longer decrypt to its original value? Select all that apply.

- M_1
- M_2
- M_3
- M_4
- None of the above

Solution: We see M_i depends on C_i and C_{i-1}. That implies that a change in C_3 will result in a change of M_3 and M_4.

Q1.8 (3 points) Which of the following statements are true for AES-GROOT? Select all that apply.

- Encryption can be parallelized
- Decryption can be parallelized
- AES-GROOT requires padding
- None of the above

Solution: Decryption can be parallelized because ciphertext decryption does not depend on another plaintext block. However, encryption depends on a previous ciphertext block, so it cannot be parallelized.

Padding is not required because the plaintext blocks are simply XORed with the encryption of the previous ciphertext block, like in CFB.