CS 161 Computer Security

Exam Prep 4

(30 points)

Q1 AES-GROOT

Tony Stark develops a new block cipher mode of operation as follows:

 $C_0 = IV$ $C_1 = E_K(K) \oplus C_0 \oplus M_1$ $C_i = E_K(C_{i-1}) \oplus M_i$ $C = C_0 \|C_1\| \cdots \|C_n$

For all parts, assume that IV is randomly generated per encryption unless otherwise stated.

Q1.1 (3 points) Write the decryption formula for M_i using AES-GROOT. You don't need to write the formula for M_1 .

$M_1 = C_1 \oplus E_K(K) \oplus IV$ $M_i = C_i \oplus E_K(C_{i-1})$	

- Q1.2 (3 points) AES-GROOT is not IND-CPA secure. Which of the following most accurately describes a way to break IND-CPA for this scheme?
 - It is possible to compute a deterministic value from each ciphertext that is the same if the first blocks of the corresponding plaintexts are the same.
 - \bigcirc C_1 is deterministic. Two ciphertexts will have the same C_1 if the first blocks of the corresponding plaintexts are the same.
 - \bigcirc It is possible to learn the value of K, which can be used to decrypt the ciphertext.
 - \bigcirc It is possible to tamper with the value of IV such that the decrypted plaintext block M_1 is mutated in a predictable manner.

Solution: The first block of ciphertext is, in fact, non-deterministic since it's XORed with a random IV. However, this doesn't provide any useful security since it's easy to just XOR out the IV and reveal the value of $E_K(K) \oplus M_1$, which is deterministic.

It is not possible to leak the value of K, and tampering with the IV does break integrity, but this does not inherently violate IND-CPA (though it might break other threat models such as IND-CCA).

Q1.3 (5 points) AES-GROOT is vulnerable to plaintext recovery of the first block of plaintext. Given a ciphertext C of an unknown plaintext M and different plaintext-ciphertext pair (M', C'), provide a formula to recover M_1 in terms of C_i , M'_i , and C'_i (for any i, e.g. C_0 , M'_2 , C'_6).

Recall that the IV for some ciphertext C can be referred to as C_0 .

Solution: Like previously, we can XOR out the value of $C_0 = IV$, and, because we know the value of C'_1 and M'_1 in our plaintext-ciphertext pair, we can derive the value of $E_K(K) = C'_1 \oplus C'_0 \oplus M'_1$. Thus, to learn M_1 , we compute

 $M_1 = C_1 \oplus C_0 \oplus C'_1 \oplus C'_0 \oplus M'_1$ = $(E_K(K) \oplus C_0 \oplus M_1) \oplus C_0 \oplus (E_K(K) \oplus C'_0 \oplus M'_1) \oplus C'_0 \oplus M'_1$ = M_1 If AES-GROOT is implemented with a fixed $IV = 0^b$ (a fixed block of b 0's), the scheme is vulnerable to full plaintext recovery under the chosen-plaintext attack (CPA) model. Given a ciphertext C of an unknown plaintext and different plaintext-ciphertext pair (M', C'), describe a method to recover plaintext block M_4 .

Q1.4 (5 points) First, the adversary sends a value M'' to the challenger. Express your answer in terms of in terms of C_i , M'_i , and C'_i (for any *i*).

Solution: We need to learn the value of $E_K(C_3)$ in order to recover the value of M_4 . Since the IV is fixed at 0^b , we can send some message with $M''_1 = E_K(K) \oplus C_3$ and $M''_2 = 0^b$ ino rder to learn the $E_K(C_3)$. To do this, we first need to derive an expression for $E_K(K)$. Given (M', C'), we know that we can XOR out M'_1 from C'_1 to arrive at

$$E_K(K) = C'_1 \oplus M'_1$$

= $E_K(K) \oplus 0^b \oplus M'_1 \oplus M'_1$
= $E_K(K)$

Once we have this expression, we send

$$M_{1}'' = C_{1}' \oplus M_{1}' \oplus C_{3}$$
$$M_{2}'' = 0^{b}$$
$$M'' = M_{1}'' \|M_{2}''$$

The first block of the resulting ciphertext is $C_1'' = E_K(K) \oplus 0^b \oplus E_K(K) \oplus C_3 = C_3$. Because of this, the second resulting ciphertext block is $C_2'' = E_K(C_3) \oplus 0^b = E_K(C_3)$.

Q1.5 (5 points) The challenger sends back the encryption of M'' as C''. Write an expression for M_4 in terms of C_i , M'_i , C'_i , M''_i , and C''_i (for any *i*).

Solution: Now that we have $C_2'' = E_K(C_3)$, we can simply XOR out that value from $C_4 = E_K(C_3) \oplus M_4$. The resulting expression is

$$M_4 = C_4 \oplus C_2''$$

= $E_K(C_3) \oplus M_4 \oplus E_K(C_3)$
= M_4

- Q1.6 (4 points) Which of the following methods of choosing *IV* allows an adversary under CPA to fully recover an arbitrary plaintext (not necessarily using your attack from above)? Select all that apply.
 - \Box *IV* is randomly generated per encryption
 - IV = 1^b (the bit 1 repeated b times)
 - *IV* is a counter starting at 0 and incremented per encryption
 - \blacksquare *IV* is a counter starting at a randomly value chosen once during key generation and incremented per encryption
 - \Box None of the above

Solution: The above attack is possible with any method of choosing *IV* that's predictable.

Q1.7 (2 points) Let C be the encryption of some plaintext M. If Mallory flips with the last bit of C_3 , which of the following blocks of plaintext no longer decrypt to its original value? Select all that apply.

Solution: We see M_i depends on C_i and C_{i-1} . That implies that a change in C_3 will result in a change of M_3 and M_4 .

Q1.8 (3 points) Which of the following statements are true for AES-GROOT? Select all that apply.

Encryption can be parallelized

- □ AES-GROOT requires padding
- $\hfill\square$ None of the above

Solution: Decryption can be parallelized because ciphertext decryption does not depend on another plaintext block. However, encryption depends on a previous ciphertext block, so it cannot be parallelized.

Padding is not required because the plaintext blocks are simply XORed with the encryption of the previous ciphertext block, like in CFB.