
Peyrin Kao
Fall 2022

CS 161
Computer Security Discussion 8

Question 1 Cross-site not scripting ()
Consider a simple web messaging service. You receive messages from other users. The page shows all

messages sent to you. Its HTML looks like this:

Mallory: Do you have time for a conference call?
Steam: Your account verification code is 86423
Mallory: Where are you? This is important!!!
Steam: Thank you for your purchase

The user is off buying video games from Steam, while Mallory is trying to get ahold of them.

Users can include arbitrary HTML code messages and it will be concatenated into the page, unsani-
tized. Sounds crazy, doesn’t it? However, they have a magical technique that prevents any JavaScript

code from running. Period.

Q1.1 Discuss what an attacker could do to snoop on another user’s messages. What specially crafted

messages could Mallory have sent to steal this user’s account verification code?

Q1.2 Keeping in mind the attack you constructed in the previous part, what is a defense that can prevent

against it?

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 4

Question 2 Second-order linear... err I mean SQL injection ()
Alice likes to use a startup, NotAmazon, to do her online shopping. Whenever she adds an item to

her cart, a POST request containing the field item is made. On receiving such a request, NotAmazon
executes the following statement:

cart_add := fmt.Sprintf("INSERT INTO cart (session, item) " +
"VALUES ('%s', '%s')", sessionToken, item)

db.Exec(cart_add)

Each item in the cart is stored as a separate row in the cart table.

Q2.1 Alice is in desperate need of some pancake mix, but the website blocks her from adding more than

72 bags to her cart . Describe a POST request she can make to cause the cart_add statement to

add 100 bags of pancake mix to her cart.

When a user visits their cart, NotAmazon populates the webpage with links to the items. If a user only

has one item in their cart, NotAmazon optimizes the query (avoiding joins) by doing the following:

cart_query := fmt.Sprintf("SELECT item FROM cart " +
"WHERE session='%s' LIMIT 1", sessionToken)

item := db.Query(cart_query)
link_query = fmt.Sprintf("SELECT link FROM items WHERE item='%s'", item)
db.Query(link_query)

After part(a), Alice recognizes a great business opportunity and begins reselling all of NotAmazon’s
pancake mix at inflated prices. In a panic, NotAmazon fixes the vulnerability by parameterizing the

cart_add statement.

Q2.2 Alice claims that parameterizing the cart_add statement won’t stop her pancake mix trafficking

empire. Describe how she can still add 100 bags of pancake mix to her cart. Assume that NotAmazon
checks that sessionToken is valid before executing any queries involving it.

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 4 –

Question 3 CalCentral Security ()
Given your performance as a skilled attacker, university administrators have asked you to assess the

security of the CalCentral platform.

The CalCentral website is set up as follows:

• CalCentral is located at https://calcentral.berkeley.edu/.

• The Central Authentication Service (CAS) is located at https://auth.berkeley.edu/.

• CalCentral uses session tokens stored in cookies for authentication, similar to Project 3. The

session token cookie has domain berkeley.edu, and the Secure and HttpOnly flags are set.

• CalCentral does not use CSRF tokens or any form of CSRF protection.

Each subpart is independent.

Q3.1 (3 points) You find a reflected XSS vulnerability on CAS. https://berkeley.edu has a footnote
that says “UC Berkeley.”

True or false: Using this vulnerability, you can cause the victim to see “CS 161 Enterprises” in

the footnote when they visit https://berkeley.edu.

True, because the script runs with the same origin as https://berkeley.edu.

True, because XSS subverts the same-origin policy.

False, because the script runs with a different origin from https://berkeley.edu.

False, because the script only affects the browser’s local copy of the site.

Q3.2 (3 points) You find a stored XSS vulnerability on CalCentral.

True or false: Using this vulnerability, you can cause the victim to load CalCentral with the

“My Academics” button changed to link to https://evil.com/.

True, because Javascript on a page can change that page’s HTML

True, because CalCentral does not implement CSRF tokens.

False, because Javascript on a page cannot change that page’s HTML

False, because https://evil.com has a different origin from CalCentral

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 4 –

Q3.3 (5 points) You try searching for <script>alert(1);</script> on
https://calcentral.berkeley.edu/search/, and you see a pop-up.

Select all domains where you’d be able to leak at least some cookies set by that domain, assuming

the appropriate cookies exist.

https://evil.edu/

https://berkeley.edu/

https://auth.berkeley.edu/

https://evil.calcentral.berkeley.edu/

http://calcentral.berkeley.edu/

None of the Above

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 4 –

