Q1 *I am Inevitable (SP22 Final Q10)*
(20 points)

Recall the WPA 4-way handshake from lecture:

<table>
<thead>
<tr>
<th>Client</th>
<th>Access Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Authentication Request</td>
<td>1. Client and AP derive the PSK from SSID and password.</td>
</tr>
<tr>
<td>4. ANonce</td>
<td>3. AP randomly chooses ANonce.</td>
</tr>
<tr>
<td>6. SNonce + MIC</td>
<td>5. Client randomly chooses SNonce and derives PTK.</td>
</tr>
<tr>
<td>8. MIC + GTK</td>
<td>7. AP derives PTK and verifies the MIC.</td>
</tr>
<tr>
<td>10. ACK</td>
<td>9. Client verifies the MIC.</td>
</tr>
</tbody>
</table>

For each method of client-AP authentication, select all things that the given adversary would be able to do. Assume that:

- The attacker does not know the WPA-PSK password but that they know that client’s and AP’s MAC addresses.
- For rogue AP attacks, there exists a client that knows the password that attempts to connect to the rogue AP attacker.
- The AMAC is the Access Point’s MAC address and the SMAC is the Client’s MAC address.
Q1.1 (5 points) The client and AP perform the WPA 4-way handshake with the following modifications:

- $PTK = F(ANonce, SNonce, AMAC, SMAC, PSK)$, where F is a secure key derivation function
- $MIC = PTK$

☐ An on-path attacker that observes a successful handshake can decrypt subsequent WPA messages without learning the value of the PSK.

☐ An on-path attacker that observes a successful handshake can trick the AP into completing a new handshake without learning the value of the PSK.

☐ An on-path attacker that observes a successful handshake can learn the PSK without brute force.

☐ A rogue AP attacker can learn the PSK without brute force.

☐ A rogue AP attacker can only learn the PSK if they use brute force.

☐ None of the above

Q1.2 (5 points) The client and AP perform the WPA 4-way handshake with the following modifications:

- $PTK = F(ANonce, SNonce, AMAC, SMAC)$, where F is a secure key derivation function
- $MIC = HMAC(PTK, Dialogue)$

☐ An on-path attacker that observes a successful handshake can decrypt subsequent WPA messages without learning the value of the PSK.

☐ An on-path attacker that observes a successful handshake can trick the AP into completing a new handshake without learning the value of the PSK.

☐ An on-path attacker that observes a successful handshake can learn the PSK without brute force.

☐ A rogue AP attacker can learn the PSK without brute force.

☐ A rogue AP attacker can only learn the PSK if they use brute force.

☐ None of the above
Q1.3 (5 points) The client and AP perform the WPA 4-way handshake with the following modifications:

- Authentication: Client sends $H(PSK)$ to AP, where H is a secure cryptographic hash.
- Verification: AP compares $H(PSK)$ and to the value it received.
- AP sends: $Enc(PSK, PTK)$ to client, where Enc is an IND-CPA secure encryption algorithm.

☐ An on-path attacker that observes a successful handshake can decrypt subsequent WPA messages without learning the value of the PSK.

☐ An on-path attacker that observes a successful handshake can trick the AP into completing a new handshake without learning the value of the PSK.

☐ An on-path attacker that observes a successful handshake can learn the PSK without brute force.

☐ A rogue AP attacker can learn the PSK without brute force.

☐ A rogue AP attacker can only learn the PSK if they use brute force.

☐ None of the above
Q1.4 (5 points) The client and AP perform the WPA 4-way handshake with the following modifications:

- Authentication: Client conducts a Diffie-Hellman exchange with the AP to derive a shared key K.
- Client sends: $\text{Enc}(K, \text{PSK})$ to the AP.
- Verification: Check if $\text{Dec}(K, \text{Ciphertext})$ equals the PSK
- Upon verification, AP sends: $\text{Enc}(K, \text{PTK})$, where PTK is a random value, and sends it to the client.
- Assume that Enc is an IND-CPA secure encryption algorithm.

☐ An on-path attacker that observes a successful handshake can decrypt subsequent WPA messages without learning the value of the PSK.

☐ An on-path attacker that observes a successful handshake can trick the AP into completing a new handshake without learning the value of the PSK.

☐ An on-path attacker that observes a successful handshake can learn the PSK without brute force.

☐ A rogue AP attacker can learn the PSK without brute force.

☐ A rogue AP attacker can only learn the PSK if they use offline brute force.

☐ None of the above
Q2 Coffee-Shop Attacks (SU21 Final Q4) (17 points)
Dr. Yang comes to MoonBucks and tries to connect to the network in the coffee shop. Dr. Yang and http://www.piazza.com are communicating through TCP. Mallory is an on-path attacker.

Q2.1 (5 points) Which of the following protocols are used when Dr. Yang first connects to the Wi-Fi network and visits http://www.piazza.com? Assume any caches are empty. Select all that apply.

- [] CSRF
- [] HTTP
- [] IP
- [] DHCP
- [] None of the above

Q2.2 (3 points) Suppose Mallory spoofs a packet with a valid, upcoming sequence number to inject the malicious message into the connection. Would this affect other messages in the connection?
- [] Yes, because the malicious message replaces some legitimate message
- [] Yes, because future messages will arrive out of order
- [] No, because on-path attackers cannot inject packets into a TCP connection
- [] No, because TCP connections are encrypted

Q2.3 (3 points) To establish a TCP connection, Dr. Yang first sends a SYN packet with Seq = 980 to the server and receives a SYN-ACK packet with Seq = 603; Ack = 981. What packet should Dr. Yang include in the next packet to complete the TCP handshake?
- [] SYN-ACK packet with Seq = 981; Ack = 604
- [] SYN-ACK packet with Seq = 604; Ack = 981
- [] ACK packet with Seq = 981; Ack = 604
- [] ACK packet with Seq = 604; Ack = 981
- [] Nothing to send, because the TCP handshake is already finished.

Q2.4 (3 points) Immediately after the TCP handshake, Mallory injects a valid RST packet to the server. Next, Mallory spoofs a SYN packet from Dr. Yang to the server with headers Seq = X. The server responds with a SYN-ACK packet with Seq = Y; Ack = X + 1. What is the destination of this packet?
- [] Dr. Yang
- [] Mallory
- [] The server
- [] None of the above

This content is protected and may not be shared, uploaded, or distributed.
Q2.5 (3 points) Which of the following network attackers would be able to **reliably** perform the same attacks as Mallory?

- A MITM attacker between Dr. Yang and the server
- An off-path attacker
- All of the above
- None of the above